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Abstract

Prostate cancer is the second leading cause of cancer death in men in the developed world.
A more sensitive and specific detection strategy for lethal prostate cancer beyond serum
prostate specific antigen (PSA) population screening is urgently needed. Diagnosis by
canine olfaction, using dogs trained to detect cancer by smell, has been shown to be both
specific and sensitive. While dogs themselves are impractical as scalable diagnostic sen-
sors, machine olfaction for cancer detection is testable. However, studies bridging the divide
between clinical diagnostic techniques, artificial intelligence, andmolecular analysis
remains difficult due to the significant divide between these disciplines.We tested the clini-
cal feasibility of a cross-disciplinary, integrative approach to early prostate cancer biosen-
sing in urine using trained canine olfaction, volatile organic compound (VOC) analysis by
gas chromatography-mass spectroscopy (GC-MS) artificial neural network (ANN)-assisted
examination, andmicrobial profiling in a double-blinded pilot study. Two dogs were trained
to detect Gleason 9 prostate cancer in urine collected from biopsy-confirmed patients.
Biopsy-negative controls were used to assess canine specificity as prostate cancer biode-
tectors. Urine samples were simultaneously analyzed for their VOC content in headspace
via GC-MS and urinary microbiota content via 16S rDNA Illumina sequencing. In addition,
the dogs’ diagnoses were used to train an ANN to detect significant peaks in the GC-MS
data. The canine olfaction system was 71% sensitive and between 70–76% specific at
detecting Gleason 9 prostate cancer. We have also confirmed VOC differences by GC-MS
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andmicrobiota differences by 16S rDNA sequencing between cancer positive and biopsy-
negative controls. Furthermore, the trained ANN identified regions of interest in the GC-MS
data, informed by the canine diagnoses. Methodology and feasibility are established to
inform larger-scale studies using canine olfaction, urinary VOCs, and urinary microbiota pro-
filing to developmachine olfaction diagnostic tools. Scalable multi-disciplinary tools may
then be compared to PSA screening for earlier, non-invasive, more specific and sensitive
detection of clinically aggressive prostate cancers in urine samples.

Introduction
Prostate cancer is the leading type of non-skin cancer in the US, is the second most prevalent

cancer worldwide, and has overtaken breast cancer in total deaths caused in the UK. Approxi-

mately 1 in 9 men will be diagnosed with prostate cancer at some point in their lives. Early bio-

marker detection of prostate cancer has been controversial, as the widely used Prostate

Specific Antigen (PSA) screening test may miss clinically significant cancer in men with nor-

mal PSA levels, may over-diagnose men with clinically insignificant cancer, and erroneously

detects benign conditions such as benign prostatic hyperplasia (BPH) and prostatitis [1].

There is an urgent need for non-invasive, more sensitive and specific diagnostic technologies.

In particular, what is needed is a prostate cancer diagnostic tool to allow differentiation of

potentially lethal, high Gleason Grade cancers with metastatic potential from indolent, low-

grade cancers that patients would die with and not from.

One potential method towards improved prostate cancer diagnosis that has been receiving

increased attention is trained canine olfaction. Over the past three decades, trained dogs have

been shown to be capable of detecting various human diseases including many types of cancer

by scent [2]. There are also several published case reports of untrained dogs spontaneously

showing interest in skin cancer on their owners. In 1989, Williams and Pembroke wrote of a

patient whose dog persistently sniffed a mole on her leg. The dog’s excessive interest in the

mole prompted the patient to visit a clinician, who identified the mole as a malignant mela-

noma [3]. In 2001, Church and Williams reported a man whose dog constantly sniffed at a

patch of eczema on his leg, which after excision was found to be a basal cell carcinoma [4]. In

2013, Campbell et al. described a case in which a man’s dog persistently licked a lesion behind

his right ear, which was later confirmed to be malignant melanoma [5]. In each of these cases,

the dog was apparently able to detect a signal of interest in the smell emanating from the skin

close to the affected area. This supposition was supported by a dog trained to detect melanoma

[6]. After a proof-of-principle study in bladder cancer was published in 2004 [7], an increasing

number of studies investigating the ability of trained dogs to accurately detect cancer has

appeared in the literature. These have included studies in the detection of lung, breast, ovarian,

bladder, and prostate cancer [8–17]. In 2015, Taverna et al. published a pivotal paper on the

canine detection of prostate cancer from urine [18]. This study included 362 cases and 540

healthy controls, with a striking mean sensitivity (2 dogs) of 99% and mean specificity (2 dogs)

of 98%. These findings support the premise that olfactory detection of prostate cancer holds

the promise of rapid and non-invasive diagnosis.

Given the limited availability of trained canines, in the present study we begin to explore

what the dogs may be detecting and whether an artificial neural network (ANN) potentially

deployed in conjunction with machine olfaction might be the tools to replicate the dogs’ early

detection capability. Previous studies have asked whether the odor of cancer in urine is
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represented by one or a set of specific volatile organic compounds (VOCs), many of which

elicit an olfactory response (i.e. they are “odorants”). Likewise, the urinary “volatilome” (the

compilation of volatile metabolites as well as other volatile organic and inorganic compounds

present), has also shown promise in prostate cancer diagnosis. In a recent paper by Lima et al.,

urinary VOC analysis distinguished prostate cancer cases with 78% sensitivity, and 94% speci-

ficity [19]. The urinary microbiome also contributes to VOC production [20], so it is reason-

able to ask whether an integrative approach yields advantages. However, VOC analysis via gas

or liquid chromatography (GC or LC) coupled to mass spectrometry (MS) or other analytical

methods that rely on identifying compounds still present significant limitations as the signa-

ture scent of cancer might depend on a combinatorial mixture in perceptual space [21] as

opposed to any specific set of individual odorants (as is the case with some scents [22]) increas-

ing difficulty of standardization, scale up and practical deployment. Additional problems with

chemical analytics include difficulty of access to expensive equipment with performance

variabilities.

The limitations of current diagnostic methods and of molecular VOC analysis by gas chro-

matography-mass spectroscopy (GC-MS) led us to question if integrating a multiparametric

approach could 1) lead to better diagnosis, 2) lead to a better understanding of the underlying

disease pathology, and 3) illuminate the way towards machine olfaction-based urinary screen-

ing and diagnosis that are also receiving increasing attention [23]. Rather than rely solely on

one method (canine detection, volatilomics, urinary microbiota profiling) to improve diagnos-

tic efficacy, in this pilot study, we sought to combine the strengths of each to create new insight

into how further integrative diagnostic developments can be made. To do this, we simulta-

neously submitted urine samples of patients with or without biopsy-proven prostate cancer for

detection by trained canine olfaction, VOC identification by GC-MS, and microbiota profil-

ing. We further trained an ANN on GC-MS data using the canine diagnoses. To our knowl-

edge, this is the first study to profile both urinary VOCs and urinary microbial populations in

the same urine samples. Our results show the feasibility and characterize the challenges to

overcome in a cross-disciplinary approach to prostate cancer diagnosis using urinary VOCs

and point towards development of practical machine olfaction-based diagnostics.

Materials andmethods
The experimental plan and study design are illustrated in Fig 1. A detailed description of the

animal training facilities and canine training protocol are provided in the S1 Methods.

Urine sample collection and patient characteristics
United States (US)-originated urine samples used in the final canine training and all GC-MS

and canine testing, were obtained under a Johns Hopkins University (JHU) Medicine Institu-

tional Review Board (IRB) approved protocol with written informed consent. For early train-

ing and canine testing the UK-originated samples were collected from participants identified

by a member of the clinical team who provided them a verbal explanation and information

sheet outlining the research. Participants then provided verbal informed consent, confirmed

by a signed consent form and completed health questionnaire. JHU urine samples were col-

lected from men undergoing prostate biopsy at the Johns Hopkins Hospital with suspicion of

prostate cancer. The men were either undergoing their first prostate biopsy or had not been

biopsied for more than 1 year prior to collection of the urine sample. Table 1 contains the clin-

ical and pathologic details of the men included in the study. Clean catch urine specimens were

obtained and transported for processing within 4 hours of collection. Unprocessed urine was

aliquoted into 3 mL aliquots and stored at -80˚C until use in this study. Aliquots were used for
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canine olfaction studies and for GC-MS. A remaining 30 mL of the urine sample was pelleted

by centrifugation at 1000g for 10 minutes and stored at -80˚C. The urine pellets were used in

the urine microbiota analyses. The details of the urine samples and use among assays are given

in S1 Table.

Animals
Canine training was performed at Medical Detection Dogs (MDD), UK (https://www.

medicaldetectiondogs.org.uk). Two dogs were selected from a pool of six available dogs to par-

ticipate in this trial after a rigorous selection process. The two dogs selected to participate in

the trial were Florin, a 4 year old female Labrador, and Midas, a 7 year old female Wire Haired

Hungarian Vizsla (Fig 2A). Each dog had been previously trained on a single source of prostate

cancer (positive) samples (Gleason 6–9, stage T1-T4) and control non-cancer (negative) sam-

ples from Milton Keynes University Hospital (MKUH) between November 2015 and Septem-

ber 2018. Training using samples supplied by JHU began in October 2018. The details of the

canine training results are given in S2 Table.

Sample storage and preparation for canine olfaction
Frozen urine samples were shipped to MDD from JHU via biosample courier service Biocaire

on dry ice, with continuous temperature monitoring indicating no significant temperature

fluctuations and upon arrival were expedited through customs in a preserved state. On

Fig 1. Study schema of workflow for the analysis of urine samples. Urine samples from subjects diagnosed with Gleason 9 prostate cancer or

biopsy-negative controls were collected and aliquots from each subject were sent for analysis by canine olfaction to Medical Detection Dogs

(MDD) in the UK, GC-MS by Massachusetts Institute of Technology (MIT) and University of Texas at El Paso (UTEP) in the US, and

microbiota profiling analysis by Johns Hopkins University (JHU) in the US. �Two control samples were reserved as extras for the trial if needed.

https://doi.org/10.1371/journal.pone.0245530.g001

Table 1. Clinical characteristics of the urine samples.

Biopsy Diagnosis Grade Number of Patients Median Age in Years (Range, IQR�) Median PSA in ng/mL (Range, IQR)
Biopsy-negative control 38 58.5 (45–80, 10.5) 4.7 (1.1–18.4, 4.4)

Cancer Gleason 9 12 65.5 (49–75, 16.25) 8.0 (3–76.8, 15.2)

� Interquartile range.

https://doi.org/10.1371/journal.pone.0245530.t001
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removal from packaging all sample details were cross-checked against the stock list provided

and immediately transferred to a -80˚C freezer.

One sample at a time was selected and vortexed for ten seconds before being opened. 1 mL

of patient urine was decanted into 1.75 mL glass vial. On completion, each glass vial containing

a 1 mL aliquot was marked with the anonymized code provided with the sample using a per-

manent marker. All aliquots of the same code were stored in the same zip-lock bag stored at

-80˚C. The zip lock bag was also marked with the anonymized code using a permanent

marker. All training and testing samples were prepared following this protocol.

Samples were selected and defrosted on the day of training and placed in a refrigerator for

no longer that 1 hour before being prepared for the training protocol. An established MDD

standard operating procedure to control for cross contamination was followed at all times (See

S1 Methods).

Blinded sample preparation for trial
Urine samples were link anonymized and blinded to MDD with information detailing which

samples were to be used for double blind testing. We also received an electronic file from Dr.

Steve Morant, Consultant Statistician, University of Dundee and Leslie Mangold MS, Research

Administrative Manager, JHU, containing the required samples blinded in set order for expo-

sure to the dogs during the trial. One cancer and three biopsy-negative control samples were

included in each run.

On a trial day each sample was selected from the blinded list and prepared for testing fol-

lowing the previously described protocol. The relevant samples were collected from the freezer

and defrosted to liquid state. When in liquid state, the pots and aliquot were placed into the

refrigerator to stabilize for a minimum of ten minutes before use. When ready to test, each

sample was recovered from the refrigerator, decanted into the appropriate glass presentation

pot and sealed with a metal lid. This was left for ten minutes before use. For testing, the lid was

removed and each test pot was placed into the metal arm attached to the carousel (Fig 2B and

2C) following the blinded predetermined randomization supplied. After presentation to the

Fig 2. Study schema for canine olfaction trial. (A) The two dogs, Florin and Midas, selected to participate in the trial.

(B) Image of the presentation pots. (C) Test pots placed into the metal arm attached to the carousel. (D) Comparison of

indications to biopsy-negative control and cancer samples in double blind trial. This table shows that out of the 21

control samples, Florin produced 5 false positive indications resulting in 76.2% specificity versus Midas’ 6 false positive

indications resulting in 70% specificity. Both dogs correctly indicated to 5 out of 7 target samples giving 71.4

sensitivity.

https://doi.org/10.1371/journal.pone.0245530.g002
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dog, the sample was removed from the carousel and resealed with the matched lid until it was

required again or was returned to the freezer for future use or storage.

At the beginning of the trial session the DVD recorded CCTV camera was started. The

MDD standard operating procedure to control for cross contamination was again followed.

Canine biodetection performance protocol
At the beginning of every session a number of warm-up runs were completed. These consisted

of single blind runs incorporating samples selected from the training cohort to prepare the

dogs for work and to satisfy the project specialist that the dogs were ready to complete trial ses-

sions. The trial samples were then prepared according to the sample storage and preparation

section above.

Two members of the training team managed the testing: a bio-detection technician, to

coordinate the trial, and a project specialist. Also present was the cancer study research leader.

Once the test was ready to start, the specialist was called into the room with the dog. The spe-

cialist stood behind the shield and tasked the dog to search. The dog approached the carousel

at the first position and proceeded anti-clockwise sniffing each position in turn (S1 Movie). If

a sample was “indicated” by the dog (e.g., the dog indicated that the sample contained prostate

cancer, see S1 Movie), the specialist signaled to the technician coordinating the test, using a

hand signal hidden from the dog that this was “called”. Florin indicates a sample by standing

and staring at the sample whereas Midas sits in front of the sample. The technician consulted

the database which revealed the answer, and this was displayed on the dual monitor for the

specialist to see. If correct a green tick was displayed and the dog was rewarded appropriately.

If incorrect, a red X was displayed, and the dog was recalled from the sample. If a correct

response to the test run was “called” the run was deemed finished. The specialist and dog left

the room. The samples were recovered, sealed and stored in the refrigerator or freezer accord-

ing to the requirements of further runs. If the “call” was incorrect, the sample was removed

from the line, replaced with a blank and the dog was tasked to search. If a second incorrect

“call” was made the run was deemed complete. No further searches took place during this trial

with this specific sample set. At any time throughout the testing phase, a calibration run con-

sisting of samples selected and presented from the training cohort could be called by the spe-

cialist if it was deemed that the dog had become unsettled.

All runs proceeded in this manner until the trial was completed. When a run had been com-

pleted and the result was known, the samples were used by the specialist for calibration of new

runs. This enabled us to use relatively novel samples to prepare the dogs for the new test run.

In the case of runs where an incorrect decision had been made (false positive more than once),

the specialist was unable to use the line to pre-train the dogs as the identity of the positive sam-

ple in the run was not known.

Statistical methods, canine olfaction trial
We calculated the binomial probabilities of the observed success rates in picking positive sam-

ples which were presented in sets of four, but each sample required a ‘yes/no’ decision, based

on the null hypothesis that choice was random.

GC-MS data collection and analysis
GC-MS was coupled with headspace solid-phase microextraction (HS-SPME) to analyze urine

samples obtained from prostate cancer patients and biopsy-negative controls. Frozen samples

were treated in the same way as described above in the canine section including anonymized

coding. Upon thawing to room temperature, samples were transferred via pipette to headspace

PLOS ONE Integration of canine olfaction with chemical andmicrobial profiling of urine to detect prostate cancer

PLOSONE | https://doi.org/10.1371/journal.pone.0245530 February 17, 2021 6 / 23

https://doi.org/10.1371/journal.pone.0245530


vials (Restek, Bellefonte, PA). Volatiles were extracted from the headspace of the urine with

carbon wide range SPME arrows (Restek). To facilitate equilibration, the headspace vial-SPME

arrow assembly was gently agitated at 172 rpm and 80˚C for 30 minutes.

The SPME arrow fiber was thermally desorbed in the injector of a 6890 GC system coupled

with a 5973 mass spectrometer (Agilent Technologies, Palo Alto, CA). The injector was used

with a 2:1 split ratio and a 2.0 mL/min split flow at 300˚C. For GC separation, a ZebronTM ZB-

624 column (30 m x 0.32 mm x 1.80 mm, 5% cyanopropylphenyl-94% dimethylpolysiloxane,

Phenomenex, Torrance, CA) was used, and the carrier gas flow was maintained at 1 mL/min.

The oven program was as follows: initial temperature of 40˚C for 1.0 minutes, 10˚C/min ramp

up to 300˚C, and 300˚C isothermal for 10 minutes. The MS transfer line temperature was

maintained at 240˚C, and MS spectra were recorded in scan mode from m/z (mass to charge

ratio) 35–500. GC-MS data was analyzed via Agilent MSD ChemStation software

(E.02.02.1431) in combination with MZmine 2 open-source software. The headspace, GC, and

MS conditions are summarized in S3 Table.

All detected peaks were screened against the 2017 NIST EPA/NIH mass spectral library

using the NIST Mass Spectral Search Program (v2.3, National Institute of Standards and

Technology) and the Automated Mass Spectral Deconvolution and Identification System

(AMDIS; v2.70, National Institute of Standards and Technology). The mass spectral search

produces matches with a match factor that describes the quality of the match. A perfect

match results in a value of 999; spectra with no peaks in common result in a value of 0. As a

general guide, 900 or greater is an excellent match; 800–900, a good match; 700–800, a fair

match. Less than 600 is a poor match. However, unknown spectra with many peaks will tend

to yield lower match factors than similar spectra with fewer peaks. Additional identification

factors considered include the number of ions in the measured mass spectrum, whether char-

acteristic ions (e.g. molecular ions) are detected, and the number of similar NIST library

matches present.

Only the best library match is reported for each peak. This library match should not be con-

sidered as definitive identification of an unknown peak. Matches reported here cannot be

guaranteed, even when the match quality is high, without additional work including running

an identical reference compound under the same conditions.

Statistical methods, GC-MS
Over 1,157 different VOCs were found in the urine samples, resulting in a high-dimensional

modeling problem. To streamline the analysis, we first removed the VOCs that were observed

in less than 3% of the entire population. The remaining variables were screened by testing the

difference in each VOC between the prostate cancer positive and biopsy-negative control

groups. The Wilcoxon rank-sum test was used since it can accommodate the zero inflation

among many VOCs. Heat maps were generated to visualize those significant VOCs (p<0.05)

in the prostate cancer and biopsy-negative control groups.

Applying a liberal cutoff of 0.2 to the p-values, over 29 VOCs remained for the model devel-

opment. We fit regularized logistic regression models with SIS penalty, and the 10-fold cross-

validation was used to select the optimal tuning parameter [24]. The final logistic model was

then evaluated via the Receiver Operating Characteristic (ROC) curve and other performance

measures on the basis of jackknife prediction [25], which helps alleviate the over-optimism

induced by variable selection. Furthermore, Firth’s approach was taken to fit the final logistic

model in order to achieve bias-reduction for the small sample scenario and deal with the nearly

complete separation seen in the data [26]. All statistical analyses are performed using the

open-source statistical computing software R [27].
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Urinary microbiota profiling and data analysis
DNA was extracted from urine pellet samples (12 Gleason 9 cancer, 38 biopsy-negative con-

trols) and six blank extraction negative controls as previously described [28]. 16S rDNA gene

libraries were generated and submitted to the SKCCC Next Generation Sequencing Core at

Johns Hopkins for next generation sequencing on an Illumina HiSeq instrument as previously

described [28]. Raw paired-end reads were merged into consensus sequences using FLASH

requiring a minimum 20 bp overlap and a 5% maximum mismatch density, and subsequently

filtered for quality (targeting an error rate< 0.1%) and length (minimum 60 bp) using Trim-

momatic and QIIME [29]. Passing sequences were then trimmed of primers, evaluated for chi-

meras with UCLUST [30] (de novo mode), and filtered for host-associated contaminant using

Bowtie2 [31] searches of NCBI Homo sapiens Annotation Release 106. Additionally chloro-

plast and mitochondrial contaminants were detected and filtered using the RDP classifier with

a confidence threshold of 50%. High-quality clean 16S sequences (80,000 sequences per sam-

ple) were then subjected to high-resolution taxonomic assessment using Resphera Insight [32–

34]. One control sample did not have sufficient sequencing reads to continue, therefore the

final analysis was performed on 12 cancer samples and 37 biopsy-negative controls.

Contaminant removal was performed in three phases. The first phase identified potential

contaminant sequences based on abundance in the negative controls as previously described

[28]. The next phase assessed spearman correlation (correlation > 0.30) with 10 indicator con-

taminant species. Finally, we performed general removal of common contaminant genera (S4

Table). Each sample was normalized via rarefaction to 2,700 clean sequences per sample. Beta-

diversity analysis, including Bray-Curtis and UniFrac distance computation and principal

coordinates analysis (PCoA), was performed in QIIME. Comparative statistical analysis for

differential abundance was performed using the Mann-Whitney U test.

Neural network training
We trained an ANN to emulate canine cancer diagnoses of urine samples based upon GC-MS

data presented to it. We used both network skeletonization [35–37] and auto-associative filtering

[38], followed by anomaly detection. Rule extraction techniques were then applied to this net [35–

37] to reveal the “logic circuitry” developed within it through both training and the selective prun-

ing of its connection weights. Using this semi-quantitative technique, salient inputs to the model

became evident, as well as the interplay between them in determining the ANN prediction of the

canine’s diagnosis. In general, this approach involves training a network model identifying domi-

nant connection traces bridging outputs of interest with network input nodes they are most func-

tionally dependent upon. Analysis proceeds working backward from the ANN output weight

layer, pruning less significant weights to expose the most prominent connective path to the ANN

hidden layer and the most important node(s) of that layer. This process is repeated, starting at

that node, and working through successive layers of the net until reaching the input layer, the

most significant weights therein indicating the critical factors relevant to the chosen output.

Driven by the relatively small number of training exemplars available, we trained a preliminary

network and skeletonized it in this fashion. The resulting weight pruning indicated the most

important GC-MS peaks occurring in the interval from 10 to 14 minutes. Accordingly, we

stripped out data outside this range of retention times, thereby reducing the size of the input layer

from nearly 9,000 to 205 points. The neural net chosen was a fully connected Multilayer Percep-

tron (MLP), whose neurons utilized sigmoid transfer functions. This net was trained using a com-

mercial product called PatternMasterTM, which features a virtual reality interface that facilitates

the rule extraction process, allowing users to “fly” through the net to select network nodes of inter-

est, and then progressively remove connection weights bridging them. Input nodes to this net
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represented abundances within the GC-MS data at retention times in the range from 10 to 14

minutes, for a total of 205 data points. The two network output nodes represented canine-indi-

cated positive and canine-indicated negative alerts to cancer. A minimal number of hidden layer

nodes were chosen, 32 in all, not to attain optimal prediction accuracy, but to avoid memorization

and to facilitate the graphical skeletonization of the net to expose dominant connections.

All GC-MS data, 808 exemplars in all, was normalized to the range [0, 1], using minimum

and maximum values of the data. Backpropagation training proceeded with a learning rate

was 0.1, and a momentum of 0.03, with random ordinal shuffling of the data occurring with

every training epoch to avoid localized learning effects. Scale margin was set to 0.1. The net

was trained to a root-mean-square (RMS) error of 0.15, probably the minimal error attainable

with this limited set of connection weights.

Results
Detection of prostate cancer in urine samples by canine olfaction
Urine samples collected at JHU were sent to MDD, UK (Fig 1). Two dogs, Midas, and Florin,

were previously extensively trained to detect prostate cancer and were recalibrated on a test set of

urines (5 cancer, 15 biopsy-negative control) from JHU prior to commencement of the pilot trial

(see S2 Table and S1 Methods). A double blind pilot trial was then conducted with an additional 7

cancer and 21 biopsy-negative control samples. Fig 2D shows the compiled results of the trial, and

Table 2 provides the individual results. Florin correctly identified 16 of the 21 presented biopsy-

negative controls as negative for prostate cancer (specificity 76.2%), while Midas correctly identi-

fied 14 out of the 20 presented biopsy-negative controls (specificity 70%). Both dogs correctly

indicated 5 out of the 7 Gleason 9 prostate cancer samples, resulting in 71.4% sensitivity.

We observed that the training protocol for the dogs had a large effect on their ability to cor-

rectly identify samples, consistent with prior research [39]. The two dogs were prepared for

double blind testing phase in a two week pre-training period using a forced choice positive

bias system where each line contained a positive cancer sample and reinforcement was

strongly biased towards indication of a positive cancer sample (e.g., the dogs were only

rewarded if they indicated a positive sample). Unlike a traditional forced-choice, a positive

bias reward system allows the dogs to leave the search line up if they deemed no positive sam-

ple present. The decision to test with the positive bias reward system (i.e. no reward was given

for a non-indicated line) was made due to the limited total sample numbers for testing, the

sample to control ratio, and the minimal opportunity for the dogs to adapt to samples with

new background. However, this decision was reversed partially through testing when it

Table 2. Individual test results for 7 sample sets each containing one positive cancer and 3 biopsy-negative control samples.

Florin Midas
Set Position Run 1 Run 2 Run 3 Run 4 Position Run 1 Run 2 Run 3 Run 4
1 2 - X ✔ 3 ✔
2 1 X X 1 X X
3 3 - ✔ 2 X ✔
4 2 X - - X 1 - X X
5 3 ✔ 2 X - - ✔
6 2 - ✔ 1 X ✔
7 3 - ✔ 3 ✔

Shaded runs were conducted via a positive bias reward system. Non-shaded runs were conducted via balanced reward system. ✔ = correct indication of cancer sample.

X = incorrectly indicated control sample as a cancer sample.–is a run with no indication. Position is the original position of the cancer sample in the set. All outcomes

are based on the final pass for each run.

https://doi.org/10.1371/journal.pone.0245530.t002
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became apparent from the behavior of the dogs that the provided controls were significantly

complex. The dogs had very limited prior experience with “biopsy-negative” urine samples

from men that likely had other prostatic disease such as BPH and prostatitis. The positive bias

reward system was found in fact to be reducing the dog’s ability to learn to discriminate.

Therefore, the dogs were given a two-week pre-testing preparation period returning to a bal-

anced reward system where true blank lines and finding a target (positive) were rewarded

equally. The period that each dog was rewarded in the positive bias reward system is depicted

by the shaded area in Table 2.

It is clear from the results, particularly by dog 1 (Florin) that learning had occurred during

the first four positive bias reward system sets as on changing to balanced reward in set 5, her

results were 100%. The chance of picking the right sample out of 4, three times in a row is

(¼)3 = 1/64 = 0.016. The trained canine as a biological detector can adapt rapidly if appropriate

reinforcement is given. Dog 2, Midas, also showed improvement, the positive bias reward sys-

tem period was for only two sets before changing to balanced reward. Although it is not as

clear from the data analysis, recorded behavioral changes in the database indicated that her

performance was improving as the sets progressed.

Among the eight sample sets presented to either dog using the balanced reward system

(Table 2), the cancer sample was incorrectly identified twice in a row by only one of the dogs.

The probability of only one, or none, being missed by chance is 0.035.

Differences in VOC content of cancer versus biopsy-negative control samples
In parallel to the analysis performed by canine olfaction, a subset of the samples (6 cancer, 30

biopsy-negative controls) were sent for VOC analysis by GC-MS (Fig 3A). Only a subset could

be used in the final analysis because several of the samples (in a blinded fashion) were used to

optimize the GC-MS protocol. By pressurizing and heating the urine samples we ensured that

all volatiles available to the dogs’ nose at room temperature were also present in the GC-MS

experiments. Total raw data is available in the S1 Data. Similarly to previous studies [19, 40],

we found individual peaks representing VOCs that were elevated or reduced in prostate cancer

versus biopsy-negative control urine samples at p<0.05 (Fig 3B and 3C). VOCs elevated in the

Gleason 9 prostate cancer samples were different from those previously reported [19], includ-

ing trimethyl silanol, a volatile siloxane resulting from the degradation of silicones. However,

our study design (Gleason 9 prostate cancer versus biopsy-negative controls) has not been pre-

viously examined in regards to urinary VOCs. Several VOCs identified as being decreased in

the cancer samples, including 2-pentanone and pyrrole, are commonly found in healthy urine

samples [41, 42]. To prevent missing important predictors for prostate cancer prevalence, a

relatively large threshold (with p<0.20) was applied to screen variables for further develop-

ment of the regression model. Over 29 VOCs remained for the development of a logistic

model. The final logistic model was evaluated via the Receiver Operating Characteristic (ROC)

curve (Fig 3D). On the basis of predicted probabilities from the final model obtained via jack-

knife cross-validation, the area under the ROC curve (AUC) is 0.935, indicating a high dis-

criminative power. Further validation of the above regression model using external testing

samples is warranted for the development of VOC based diagnostic model.

Differences in microbial content of cancer versus biopsy-negative control
samples
We likewise profiled the urinary microbiota via 16S rDNA sequencing in the samples used for

canine olfaction and GC-MS (Fig 1) as previously described [28, 43]. One of the biopsy-nega-

tive control samples did not have enough sequencing reads for analysis, therefore the final
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analysis was performed in 12 cancer samples and 37 biopsy-negative control samples. Hierar-

chical clustering analysis did not indicate a clear separation of cancer versus biopsy-negative

control samples based on the complete microbiota profile (Fig 4A). Likewise, beta diversity

analyses did not indicate a clear separation of cancer versus biopsy-negative control samples

(Fig 4B). Similar to the VOC analyses, there were individual species of bacteria that were dif-

ferentially abundant in cancer versus biopsy-negative control samples (Fig 4C). One of the

bacterial species found to be elevated in Gleason 9 cancer samples, Dolosigranulum pigrum, is

a rare opportunistic pathogen that has been previously reported in urine samples [44].

Also similar to the VOC analyses, the species of bacteria identified as differentially

expressed in cancer versus biopsy-negative control samples were different than what we previ-

ously reported [28]. Our previous study included primarily low grade prostate cancer however,

and no Gleason 9 prostate cancer urine samples.

An artificial neural network trained on canine olfaction diagnosis detects
differences in cancer versus biopsy-negative controls
On the basis of VOCs collected by headspace SPME and analyzed by GC-MS, the raw ion

chromatographs were used to train an ANN to emulate canine cancer diagnoses of urine

Fig 3. Analysis of VOCs in patient urine samples. (A) Study schema for VOC analysis. (B) Heat map of significantly increased or

decreased VOCs by Wilcoxon rank-sum test (p<0.05) in cancer versus biopsy-negative control samples. Shown on x-axis are the CAS

Registry numbers of the seven significant VOCs (p<0.05) showing elevating or reducing quantity in prostate cancer patients. The

correlation between VOCs and patients ranges from low (black) to high (white). (C) Compounds significantly elevated or decreased in

cancer versus biopsy-negative control samples. (D) The Receiver Operating Characteristic (ROC) curve for VOC prostate cancer logistic

model and verified in 34 patients.

https://doi.org/10.1371/journal.pone.0245530.g003
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samples. Both network skeletonization [35–37] and auto-associative filtering [38] techniques

were used to reveal the most important chromatograph peaks contributing to the canine diag-

nosis. The network skeletonization approach (Fig 5) indicated the most salient spectral fea-

tures occurred in the interval from 10 minutes to 14 minutes. This finding was corroborated

by auto-associative filtering (Figs 6 and 7), which indicated the chief differences between can-

cer and biopsy-negative control urine samples were an abundance of elutes represented by a

pair of peaks at 13.177 and 13.563 min, as well as the absence of elutes, relative to biopsy-nega-

tive control samples, at 12.698 min. Similar but lesser depletions appear 10.561, 10.899, and

11.473 min. The two techniques (skeletonization and auto-associative filtering) were therefore

consistent in indicating the region of the data most important in informing canine diagnosis,

and further indicated peaks that were associated with cancer vs. biopsy-negative control

urines.

Discussion
This study demonstrated feasibility and identified the challenges of a multiparametric

approach as a first step towards creating a more effective, non-invasive early urine diagnostic

method for the highly aggressive histology of prostate cancer (e.g., Gleason grade 9). Canine

olfaction was able to discriminate between prostate cancer and biopsy-negative urine samples,

and VOC and microbiota profiling analyses showed a qualitative difference between the two

groups. Furthermore, an ANN was trained to emulate the canine olfactory diagnoses based on

Fig 4. Analysis of microbiota in patient urine samples. (A) Unsupervised clustering (log transformed) of 16S rDNA Illumina

sequencing results from urine pellet samples by the top 25 species. The dendrogram was based on hierarchical clustering of the

Euclidean distance between samples in the combined cancer and biopsy-negative control samples. (B) Beta-diversity (Bray-Curtis) of

each urine bacterial profile, analyzed by cancer (yellow) or biopsy-negative control (blue). (C) Differential abundance of select species of

bacteria in cancer and biopsy-negative control samples. Mean percent sequence abundances are given for the samples positive for the

indicated species from the cancer and biopsy-negative control groups. MW = Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0245530.g004
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GC-MS analytical data. Our results indicate that there may be information synthesized by the

dogs regarding the nature of cancer that may not be readily identified by traditional single

channel molecular biomarker analysis, and may instead be an emergent property [21].

Although tested on a small sample set which does not enable us to make definitive conclu-

sions about accuracy, the results achieved in this pilot support the potential of specialist trained

detection dogs directly assisting in the development of an ANN to run on a bio-electronic

machine olfaction diagnostic device [23]. Our results demonstrate the canine ability to dis-

criminate, learn, and improve detection even when presented a small number of samples of a

complex odor. The challenge remains on how to port canine intelligence into machine olfac-

tors [45].

Dogs are exceptional at scent discrimination, and are also known for their ability to recog-

nize tiny changes in odor background. Changes in odor background often result in a detect-

able change of behavior, before habituation occurs. It is important therefore to habituate to

odors that may occur in samples held in a different facility produced in a different part of the

world, before being challenged with difficult discrimination decisions. Our pilot study was

limited by the number of urine samples available at JHU from men with Gleason 9 prostate

cancer with enough aliquots as well as a urine pellet available to perform our three-armed

study. The limited sample size was this study’s biggest overall challenge and particularly signif-

icant here, as we were asking dogs to discriminate more complex samples than they had ever

Fig 5. Network skeletonization of neural net mapping of GC-MS to canine-positive indicated and canine-negative
indicated urine samples. The network is depicted as a system of excitatory (red) and inhibitory connection weights

(blue). Starting from the output node representing a canine-indicated positive (TP) canine diagnosis of prostate

cancer, less significant weights are stripped away to reveal critical connections to the most dominant GC-MS peaks

contributing to the canine cancer diagnosis. The top figure shows the net with all weights present, while the bottom

figure reveals the peak near 13.139 minutes as positively correlated (i.e., red connection) with canine-positive

indication of prostate cancer.

https://doi.org/10.1371/journal.pone.0245530.g005
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previously received training on. Following detailed discussion, we decided to use five cancer

samples for familiarization training, using the remaining seven for testing.

Interestingly, two biopsy-negative controls (JHBUI-2719 and AWP-9582) were picked

incorrectly by both dogs independently in testing, and in the same order despite double blind

and random position (Table 2). GC-MS was not performed on these samples, however the

microbiota sequencing yielded interesting results. JHBUI-2719 had an abundance of Alloscar-
dovia omnicolens (21.5% of sequencing reads) which wasn’t present in any of the other cancer

samples. AWP-9582 had an atypical urinary microbiome profile where almost all of the reads

were assigned to either Dolosigranulum pigrum (found to be more abundant in cancer sam-

ples) or an unknown species of Lactobacillales. Understanding the reason for the dogs’ error,

and whether urinary microbiota contributed to the error, could provide valuable insights and

it is our plan to investigate it in future, larger sample size studies.

In this pilot study, the dogs were also being tested against particularly difficult controls:

urine from men that were biopsy-negative for prostate cancer. These men would all have been

biopsied for an indication of prostate cancer (most typically elevated PSA or abnormal DRE).

Therefore, the control group likely had other prostatic disease such as BPH and prostatitis, and

likewise it is possible that some of the biopsy-negative men actually had prostate cancer that

was missed on biopsy. Unfortunately, follow up data on any subsequent positive biopsies for

these men was not available to us. The dogs had only limited training to discriminate biopsy-

negative controls from prostate cancer in the past due to the difficulty of sourcing well anno-

tated samples of this from our MKUH collaborator. We have since determined that it is essen-

tial not to attempt to train discrimination unless it can be confirmed with certainty that the

control is cancer-free. We therefore submit that testing dogs to this level of performance war-

rants a significant amount of training against this control group, and this must be a focal point

of all future larger-scale studies.

Initially, we made the decision to use ‘positive bias reward system’ response from the dog.

This requires the dog to continue around the carousel until he or she has made a detection

decision. The two dogs used were not originally trained under this protocol but could still sig-

nal ‘blank’ (i.e. no decision made). We shifted positive bias to expectation of a prostate cancer

in every line. Unfortunately, this also increased the likelihood of false positives. After the

Fig 6. Auto-associative filtering methodology. An auto-associative net was trained to reconstruct the GC-MS spectra

of all the canine-negative indicated samples. Inputting the spectra of canine-positive indicated spectra, the net

generated the nearest canine-negative indicated spectrum at its output. Subtraction of the output from the input

spectrum revealed anomalous features possibly associated with the canine indication of cancer. In the example shown,

both elute excesses (peaks) and deficiencies (troughs) are indicated in the difference spectrum. In short, this network

acts as a database lookup table that supplies the closest matching canine-negative indicated spectrum to one that is

applied, if need be producing synthetic data representing a potential canine-negative spectrum.

https://doi.org/10.1371/journal.pone.0245530.g006
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exposure to the first set of testing, we re-visited this decision and agreed this had been an

incorrect choice. We therefore recalibrated the dogs to accept all negative lines, hence lowering

false positive bias.

In addition to the above, ours and independent group’s published research indicates that

dogs do require further training when novel background odors are introduced, through a

Fig 7. Auto-associative filtering reveals the most dominant GC-MS features contributing to canine-positive
indication of prostate cancer from urine samples. Anomalies fall into two groups: those showing an overabundance

of elutes (JHBUI-0887, JHBUI-1028, and AWP-5734) and those revealing depletions of elutes (AWP-9307 and AWP-

6373). The peak near 13.2 minutes in the first three of these plots corresponds to that resolved at 13.139 minutes via

network skeletonization.

https://doi.org/10.1371/journal.pone.0245530.g007
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change of sample processing or environmental background. This training is necessary to

ensure the dogs are confident that these changing background odors are indeed irrelevant and

are to be ignored. This method does not require many presentations and it is an important

adjustment to enable the dog to re-habituate prior to complex discrimination tasks.

We performed chemical analyses of VOCs, which were able to identify VOC species differ-

entiating cancer from biopsy-negative control samples, however these molecular species were

distinct from those previously reported [40, 46]. The very nature of the GC-MS technique can

be seen as being loosely analogous to biological olfaction: GC-MS peaks are not always corre-

spondent to just one molecular species and fragments from different molecules but of equal

charge/mass ratios might add to the same peak while fragments of the same molecule might

appear as parts of various peaks. Similarly, most canine olfactory receptors are tuned to

respond to more than one volatile and the same volatile typically activates more than one

receptor to various levels with different receptor binding often dependent on different parts of

an odorant. In GC-MS the pattern of peaks is used to identify compounds, the “signature” of

identity is inferred, and the context of what other molecules are present or absent can greatly

affect how the identity of that molecule is interpreted. Similarly, in biological olfaction the

presence of some odorants or even odorless volatiles and combinations of odorants in mix-

tures can affect the scent character detected [22, 47] by directly or indirectly affecting the EC50

activation levels of individual receptors acting as allosteric or orthosteric modulators. The way

a scent signature of cancer or anything else a dog is trained to look for is encoded in the brain

[21], not by a particular set of molecules identified by name and concentration, but a gestalt

representation of many observations in a flexible context. Thus, in contrast to earlier studies of

the urinary volatilome in prostate cancer, our primary goal was not to identify compounds dif-

fering between prostate cancer and biopsy-negative control urines. Rather, we focused on

identifying common emergent properties signaling cancer versus non-cancer that could then

be ported to a machine learning platform, giving potential for diagnoses that do not depend

on individual biomarkers.

Much work has been done in the past by groups including our own to determine a specific

set of VOC signature biomarkers (by name and potentially relative or absolute concentration).

Efforts to mine the volatilome for robust molecular species signatures indicating a number of

conditions including prostate [46], colorectal [48], liver [49], and lung cancers [48] have con-

sistently yielded schemes where a set of selection rules can be determined cleaving any suffi-

ciently rich data set into positive and negative control clusters. The emergent issue is that just

as seen with canines, it appears that no unique (set of) molecule(s) can be found as unambigu-

ous biomarkers and instead it is the scent character, as opposed to the molecular composition

of scent that communicates the cancer signature to canines. GC-MS produces a list of VOCs

that carry the information for each experimental case but such lists themselves unfortunately

do not generalize to provide a “master biomarker template” in the form of molecular species

identifications and concentrations [48]. This shows the potential for prostate cancer diagnoses,

but validation of the VOCs remains as future research objectives.

We further report microbiota analysis of cancer versus healthy urines which did not iden-

tify a clear separation between cancer and healthy urine, although there were individual species

that distinguished the two groups. In the microbiome, similarly, there may be particular roles

in a microbial community that can be filled by different organisms; it may be the role that is

altered in cancer, and determining the characteristics of the role may be more important than

determining the organisms.

The purpose of this study was to demonstrate the feasibility of integrating the analysis of

prostate cancer patient urine samples using canine olfaction, with chemical and microbial pro-

filing. Diagnostic tests beyond PSA have been established in the last few years and are relevant
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to the planned second phase of this study which will aim to compare the receiver operating

curves of integrating canine olfaction and chemical and microbial profiling with diagnostic

tests such as Prostate Health Index (phi), SelectMDx, and PCA3. As in the case of PSA, these

are specific molecular ID biomarker-driven diagnostic metrics while the olfactory approach

central to our study depends on the emergent property of scent character. The olfactory diag-

nostic signal is not necessarily bound to an immutable (set of) molecular identities(s) as the

same functional scent character can be conferred to the dogs and machine olfactors via a vari-

ety of VOC cocktails. We do note that biomarker-driven as well as emergent-property pow-

ered diagnostic metrics, examined collectively, are reasonably expected to paint a more

accurate picture of the condition and is likely that their usefulness in directing intervention

decisions can be enhanced with the addition of a microbial profiling diagnostic examined

here. This integrative approach is a focal point for our future research direction.

Finally, we examined the feasibility, challenges, and opportunities of using canine olfaction

diagnosis to train an ANN to characterize its performance in distinguishing between cancer-

ous and non-cancerous (i.e. biopsy-negative control) states using GC-MS data alone as well as

in combination with the canine data collected on same samples.

In conclusion, our data speaks to the feasibility of discriminating Gleason 9 prostate cancer

from biopsy-negative controls by integrative analysis of several vastly different methodologies,

each of which has been shown capable to various degrees by itself: trained canine olfaction,

conventional GC-MS analysis of urine headspace VOC as well as our novel, purpose-devel-

oped ANN approach, and urinary microbiota profiling on the same samples. The canines were

able to detect Gleason 9 prostate cancer versus biopsy-negative controls at a high sensitivity

and specificity. Analysis of GC-MS data collected on urinary VOCs was able to identify molec-

ular species differentiating cancer from biopsy-negative controls while further validation is

needed. Microbiota profiling did not differentiate prostate cancer from biopsy-negative con-

trols when assessed as a whole, however individual VOCs and microbial species were found to

be differentially abundant in the two groups. Combining these data streams allowed us to train

an ANN to emulate canine olfactory diagnosis. The biggest challenge throughout this pilot

study was the availability of pathologically well-characterized and standardized urine samples.

We were aware of this limitation and designed the study accordingly fully expecting that the

small number of samples will prevent us achieving the very high sensitivity and selectivity that

has been shown to be generally achievable with canines, and similarly limited our training of

the ANN. We fully expect that larger sample pools will be the key enabler of statistically pow-

ered, multi-institutional future studies seeking to fully integrate VOC and microbiota profil-

ing. The end goal of the pilot study we report here has been to pave the way towards

development of machine-based olfactory diagnostic tools that define and recapitulate what can

be detected and accomplished now via canine olfaction.
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